Supplementation of carnitine leads to an activation of the IGF-1/PI3K/Akt signalling pathway and down regulates the E3 ligase MuRF1 in skeletal muscle of rats
نویسندگان
چکیده
BACKGROUND Recently, it has been shown that carnitine down-regulates genes involved in the ubiquitin-proteasome system (UPS) in muscle of pigs and rats. The mechanisms underlying this observation are yet unknown. Based on the previous finding that carnitine increases plasma IGF-1 concentration, we investigated the hypothesis that carnitine down-regulates genes of the UPS by modulation of the of the IGF-1/PI3K/Akt signalling pathway which is an important regulator of UPS activity in muscle. METHODS Male Sprague-Dawley rats, aged four weeks, were fed either a control diet with a low native carnitine concentration or the same diet supplemented with carnitine (1250 mg/kg diet) for four weeks. Components of the UPS and IGF-1/PI3K/Akt signalling pathway in skeletal muscle were examined. RESULTS Rats fed the diet supplemented with carnitine had lower mRNA and protein levels of MuRF1, the most important E3 ubiquitin ligase in muscle, decreased concentrations of ubiquitin-protein conjugates in skeletal muscle and higher IGF-1 concentration in plasma than control rats (P < 0.05). Moreover, in skeletal muscle of rats fed the diet supplemented with carnitine there was an activation of the PI3K/Akt signalling pathway, as indicated by increased protein levels of phosphorylated (activated) Akt1 (P < 0.05). CONCLUSION The present study shows that supplementation of carnitine markedly decreases the expression of MuRF1 and concentrations of ubiquitinated proteins in skeletal muscle of rats, indicating a diminished degradation of myofibrillar proteins by the UPS. The study moreover shows that supplementation of carnitine leads to an activation of the IGF-1/PI3K/Akt signalling pathway which in turn might contribute to the observed down-regulation of MuRF1 and muscle protein ubiquitination.
منابع مشابه
Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway.
Skeletal muscle size is regulated by anabolic (hypertrophic) and catabolic (atrophic) processes. We first characterized molecular markers of both hypertrophy and atrophy and identified a small subset of genes that are inversely regulated in these two settings (e.g. up-regulated by an inducer of hypertrophy, insulin-like growth factor-1 (IGF-1), and down-regulated by a mediator of atrophy, dexam...
متن کاملIGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1.
Muscle atrophy results primarily from accelerated protein degradation and is associated with increased expression of two muscle-specific ubiquitin ligases (E3s): atrogin-1 and muscle ring finger 1 (MuRF1). Glucocorticoids are essential for many types of muscle atrophy, and their effects are opposite to those of insulin-like growth factor I (IGF-I) and insulin, which promote growth. In myotubes,...
متن کاملInsulin down-regulates the expression of ubiquitin E3 ligases partially by inhibiting the activity and expression of AMP-activated protein kinase in L6 myotubes
While insulin is an anabolic hormone, AMP-activated protein kinase (AMPK) is not only a key energy regulator, but it can also control substrate metabolism directly by inducing skeletal muscle protein degradation. The hypothesis of the present study was that insulin inhibits AMPK and thus down-regulates the expression of the ubiquitin E3 ligases, muscle atrophy F-box (MAFbx) and muscle RING fing...
متن کاملI-34: Steroid Hormone Signalling at the FetomaternalInterface
Background: Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. However, HESCs also abundantly express androgen receptors (AR), yet the role of this member of the superfamily of ligand-dependent transcription factors in the decidual process remains poorly elucidated. Materials a...
متن کاملAtrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle.
Muscle atrophy in many conditions share a common mechanism in the upregulation of the muscle-specific ubiquitin E3-ligases atrophy gene-1/muscle atrophy F-box (Atrogin-1/MAFbx) and muscle ring-finger protein 1 (MuRF1). E3-ligases are part of the ubiquitin proteasome pathway utilized for protein degradation during muscle atrophy. In this study, we provide new data to show that this is not the ca...
متن کامل